亚里士多德车轮悖论是指一个轮子,滚动一圈,滚过的距离就是它的周长,而轮子里面的一个点(假设叫做红点),它也和轮子外沿的点(假设叫做黄点)一样,走过了相同的距离,那么就会得到一个显然错误的答案:红圈和黄圈的周长相等。
正确解释是:
黄圈是货真价实地滚了一圈,而红圈则是一边滚动,一边滑动。红点走过的距离里边含有滑动的部分,不能全部算作它的周长。如果考察轮子上各点的速度,会发现只有与地面接触的点瞬时速度为零。因此只有外沿滚过的距离等于它的周长。
数学角度的研究:
如今数学家们已经知道,存在一对一的对应关系并不表示两条曲线的长度相同;康托尔(Georg Cantor)就证明出不论线段长短,在上面可以取得的点基数都是一样的。他称点的这种超限数为“连续统”。
举例而言,所有存在于0与1这个区间中的点,都可以用一对一的对应方式摆进另一条无限长的直线上,而在康托尔之前的数学家如亚里士多德显然就是对这个问题百思不得其解。
有什么有趣的数学梗?
生活中神奇的数学规律:
1如果我们去参加一场婚礼,人数超过367人,那么其中必然有生日相同的人(并非同年)。
这就是抽屉原理。
把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。
由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。
2冬天,猫睡觉时总是把身体抱成一个球形,是因为这样身体散发的热量最少。
在数学中,体积一定,表面积最小的物体是球体。
猫缩成一个球体,可以减小和外界接触的面积,降低热交换的速度,减少热量损失的速度,节省能量,保持体温。
3车轮为什么都是圆的而不是其他形状:
圆的中心叫圆心,圆上任何一点到圆心的距离都是相等的。把车轮做成圆形,车轴在圆心上,当车轮在地面滚动时,车轴离地面的距离,总是等于车轮半径。
因此,车里坐的人,就能平稳地被车子拉着走。假如车轮变了形,不成圆形了,轮上高一块低一块,到轴的距离不相等了,车就不会再平稳。
1:古希腊数学家欧几里得:
古人学习几何更是困难,据说当学到‘一个等腰三角形的两个底角相等’这个定理时,好多人就无论怎样都学不会了,因此这个定理又叫‘驴子的梯子’。直到现在,平面几何的一些知识或者立体几何的一些定理仍然难住了一大批人,因此当国王多禄米向欧几里得讨教学习几何的捷径时,欧几里德告诉他:“在几何里面,没有为国王提供的捷径。”
2:古希腊数学家阿基米德:
叙拉古的亥厄洛国王委托金匠造一顶纯金的皇冠,但是怀疑 里面掺了银子,于是请阿基米德鉴定。一次阿基米德洗澡时,发现水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也不相等。根据这一道理,就可以判断皇冠是否掺假。阿基米德高兴得跳起来,赤身奔回家中,口中大呼:“尤 里卡!尤里卡!”(我发现了),于是便开始在大街上裸奔起来了,一直跑到家里。
3:瑞士的伯努利家族:
瑞士的伯努利家族是一个数学家族,三代出现了8位杰出的科学家。这个家族人的脾气都不太好,最奇怪的他们是开始都不是从事数学,可是到后来全部迷上了数学。父亲因为儿子得了数学大奖,嫉妒之下竟然一脚从窗户把儿子踹到了室外。
4:瑞士数学家欧拉:
欧拉小学就被开除了,因为他问的问题太多,给老师太多的难堪。有人说欧拉是先会算术后会说话的,欧拉很小就知道等周原理:在周长固定的所有图形,面积最大的一定是圆。
5:英国数学家牛顿:
在微积分发现的优先权的争执上,英国数学家和大陆数学家产生了严重纠纷。牛顿于是用了很多笔名来‘证明’莱布尼茨的知识不是原创而是抄袭牛顿的。其言辞之尖刻、辱骂之恶毒令人难以想像。莱布尼茨死后,牛顿还津津乐道的向别人讲述怎样用马甲使莱布尼茨伤透了心,并沾沾自喜。
扩展资料:
(1)欧几里得(英文:Euclid;希腊文:Ευκλειδη? ,公元前330年—公元前275年),古希腊人,数学家。被称为“几何之父”,他最著名的著作《几何原本》是欧洲数学的基础。
(2)阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称。
(3)瑞士的伯努利家族(也译作贝努力),一个家族3代人中产生了8位科学家,后裔有不少于120位被人们系统地追溯过,他们在数学、科学、技术、工程乃至法律、管理、文学、艺术等方面享有名望,有的甚至声名显赫。
(4)莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。写了大量的力学、分析学、几何学、变分法等的课本。
(5)艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。
参考资料:
百度百科——欧几里得百度百科——阿基米德
百度百科——伯努利
百度百科——欧拉
百度百科——牛顿
本文来自作者[欣芸]投稿,不代表金桥号立场,如若转载,请注明出处:https://wenmingliaocheng.cn/liao/4152.html
评论列表(4条)
我是金桥号的签约作者“欣芸”!
希望本篇文章《亚里士多德车轮悖论的正确解释是什么-》能对你有所帮助!
本站[金桥号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:亚里士多德车轮悖论是指一个轮子,滚动一圈,滚过的距离就是它的周长,而轮子里面的一个点(假设叫做红点),它也和轮子外沿的点(假设叫做黄点)一样,走过了相同的距离,那么就会得到一个...